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Letters
Applications of Baylis–Hillman acetates: one-pot, facile and
convenient synthesis of substituted c-lactams
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Abstract—A simple, convenient and one-pot transformation of the acetates of Baylis–Hillman adducts into substituted c-lactams,
that is, (E)-5-alkyl-3-arylidenepyrrolidin-2-ones via treatment with nitroalkanes in the presence of a base, followed by reductive
cyclization, using Fe/AcOH, is described.
� 2004 Elsevier Ltd. All rights reserved.
The Baylis–Hillman reaction has become a useful syn-
thetic reaction in organic chemistry in recent years
because it provides a simple and convenient method for
the synthesis of interesting classes of densely function-
alized molecules in operationally simple, one-pot, atom
economic procedures.1;2 The c-lactam framework occu-
pies an important place in nitrogen heterocycles because
it is present in various natural products and pharma-
ceutical agents3 and hence the development of conve-
nient methods for the synthesis of c-lactams represents
an interesting and attractive endeavor in organic syn-
thesis.3b;e;k;n;4 In continuation of our interest in the syn-
thesis of heterocyclic molecules,5 we herein report a
facile one-pot synthesis of substituted c-lactams, that is,
(E)-5-alkyl-3-arylidenepyrrolidin-2-ones using the ace-
tates of Baylis–Hillman adducts.

Acetates of the Baylis–Hillman adducts have been suc-
cessfully employed in a number of transformations
leading to the synthesis of various important and useful
molecules often involving high levels of stereoselectivi-
ties.6 Although there are a number of methods available
for the synthesis of c-lactams,4 a literature survey
revealed no report on the synthesis of 3-arylidene-c-
lactams using acetates of Baylis–Hillman adducts.

The literature also revealed that acetates of the Baylis–
Hillman adducts were conveniently transformed into the
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corresponding (E)-2-arylidene-4-nitroalkanoates6b [or
(E)-2-alkylidene-4-nitroalkanoates6h] and (E)-2-alkylid-
ene-4-nitroalkanones6g [via treatment with nitroalkanes
in the presence of K2CO3/DMF (or NaOH/THF) and
NaOH/THF, respectively], which were subsequently
converted into c-keto esters6b;h and 1,4-diketones6g

(Scheme 1).

It occurred to us that reductive cyclization of the (E)-2-
arylidene-4-nitroalkanoates, which would be obtained in
situ via treatment of acetates of Baylis–Hillman adducts
with nitroalkanes, with an appropriate reagent could
result in the one-pot formation of 5-alkyl-3-arylidene-
pyrrolidin-2-ones. Accordingly, we first selected methyl
3-acetoxy-3-phenyl-2-methylenepropanoate (2a) for
reaction with nitroethane (1a) in the presence of a base
followed by reductive cyclization. The best results were
obtained when the ester 2a (2mmol) was treated with
nitroethane (1a) (8mmol) in the presence of K2CO3

(8mmol) in THF/H2O at room temperature for 12 h
followed by the treatment with Fe/AcOH (after removal
of THF and nitroethane under reduced pressure) at
reflux temperature for 2 h, providing the product (E)-5-
methyl-3-benzylidenepyrrolidin-2-one (3) in 66% iso-
lated yield after work-up and purification by column
chromatography.7 With a view to examine whether the
reaction was more facile and whether the yield of 3
would be higher using a stepwise method, we also iso-
lated the trisubstituted alkene, that is, methyl (E)-2-
benzylidene-4-nitropentanoate (3A). Thus, treatment of
the starting material 2a (2mmol) with nitroethane
(8mmol) in the presence of K2CO3 (8mmol) in THF
(5mL) and water (0.1mL) at room temperature for 12 h
provided the desired trisubstituted alkene 3A in 80%
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Scheme 1. Synthesis of c-keto esters and 1,4-diketones using acetates of the Baylis–Hillman adducts.
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isolated yield after the usual work-up and column
chromatography. The 1H NMR spectrum of the crude
product indicated the presence of �5% of the Z-isomer
as was evident from the appearance of a singlet at ca. d
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Scheme 2. SN
02 reaction of methyl 3-acetoxy-3-phenyl-2-methylenepropano
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6.86 (olefinic proton) with a very low intensity. Sub-
sequent treatment of 3A with Fe/AcOH at 110 �C for 2 h
provided the desired c-lactam 3 in 71% yield (57%
overall) (Scheme 2).
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Figure 1. ORTEP diagram of compound 11.
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Since the yield was better in the case of the one-pot
method we selected the one-pot procedure as the method
of choice and extended this strategy to a representative
class of the acetates of Baylis–Hillman adducts to pro-
vide the desired (E)-5-alkyl-3-arylidenepyrrolidin-2-ones
4–14 in 55–68% yields (Scheme 3, Table 1). The (E)-
selectivity of these reactions was established from single
crystal X-ray data for pyrrolidinone 11 (Fig. 1).8

When we extended this strategy to the acetates 2h,i of
Baylis–Hillman adducts derived from butyraldehyde
and heptanal, the resulting products, that is, (E)-5-
methyl-3-butylidenepyrrolidin-2-one 15 and (E)-5-
methyl-3-heptylidenepyrrolidin-2-one 16 were obtained
in 52% and 49% yields, respectively, after column purifi-
cation. However, the 1H NMR and 13C NMR spectral
analysis of the purified products 15 and 16 indicated the
presence of �8% and �10% impurities, respectively.
Compound 15 was obtained in pure form after pre-
parative HPLC (Shim pack PREP-ODS column, meth-
anol). However, similar attempts to obtain 16 in
chemically pure form were unsuccessful. A plausible
mechanism for the one-pot transformation of the ace-
tates of Baylis–Hillman adducts into substituted c-lac-
tams is presented in Scheme 3.

In conclusion, we have developed a convenient,
operationally simple, one-pot procedure for the syn-
Table 1. Synthesis of (E)-5-alkyl-3-arylidenepyrrolidin-2-onesa–f

Nitroalkane R Acetate R0

1a Me 2a Phenyl

1a Me 2b 4-Methylph

1a Me 2c 4-Ethylphe

1a Me 2d 4-Chloroph

1a Me 2e 4-Methoxy

1a Me 2f 2-Chloroph

1a Me 2g Naphth-1-y

1b Et 2a Phenyl

1b Et 2b 4-Methylph

1b Et 2d 4-Chloroph

1b Et 2f 2-Chloroph

1b Et 2g Naphth-1-y

1a Me 2h Propyl

1a Me 2i Hexyl

aAll reactions were carried out on 2mmol of the Baylis–Hillman acetate with

water at room temperature for 12 h and then the reaction mixture was treate

nitroalkane under reduced pressure) at 110 �C for 2 h.
b The compounds 3–14 were obtained as solids while compounds 15 and 16

acterized by IR, 1H NMR (200MHz), 13C NMR (50MHz) spectral data a
c The (E)-stereochemistry of compound 11 was established by single crystal X

in analogy to 11.
dYields are of the pure products (based on acetates) after purification via si
e In the case of molecules 6, 10, 12–14, the 1H NMR spectra of the crude pr

singlet at �d 7.81–8.30 (olefinic proton) and the singlet at �d 3.85–3.92 (C
f The 1H NMR spectra of the crude products did not indicate clearly the prese

the crude product 3A (uncyclized product), which showed the presence of �
�95% (E)-selective].

g Structures were further confirmed by mass spectral analyses.
h The 1H NMR spectra of the crude nitro compounds 15A and 16A derived fro

(Z)-isomers as evidenced by the triplet at �d 6.05 (olefinic proton trans to
i 1H NMR and 13C NMR spectral analysis of the column purified produ

respectively. However, compound 15 was obtained in pure form after prep
thesis of substituted c-lactams from Baylis–Hillman
acetates.
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Na2SO4. The solvent (EtOAc) was removed under reduced
pressure and the residue thus obtained was purified by
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34.95, 47.52, 128.35, 128.54, 129.41, 130.12, 131.33, 135.73,
172.05; EIMS: 187 (Mþ). Anal. Calcd for C12H13NO: C,
76.98; H, 7.00; N, 7.48. Found: C, 76.85; H, 7.03; N, 7.52.
8. Detailed X-ray crystallographic data is available from the
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK (for compound 11 CCDC
#217594). Crystal data for 11: empirical formula,
C14H17NO; formula weight, 215.29; crystal colour, habit:
light yellow, rectangular; crystal dimensions,
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type, primitive; lattice parameters, a ¼ 10:048ð4Þ�A,
b ¼ 11:595ð5Þ�A, c ¼ 11:158ð3Þ�A; b ¼ 112:97ð3Þ; V ¼
1196:9ð8Þ �A3; space group, P21/a (no. 14); Z ¼ 4;
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RðI P 3r1Þ ¼ 0:0660, wR2 ¼ 0:1914.
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